skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pianka, Eric R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate warming can induce a cost-of-living “squeeze” in ectotherms by increasing energetic expenditures while reducing foraging gains. We used biophysical models (validated by 2685 field observations) to test this hypothesis for 10 ecologically diverse lizards in African and Australian deserts. Historical warming (1950–2020) has been more intense in Africa than in Australia, translating to an energetic squeeze for African diurnal species. Although no net impact on Australian diurnal species was observed, warming generated an energetic “relief” (by increasing foraging time) for nocturnal species. Future warming impacts will be more severe in Africa than in Australia, requiring increased rates of food intake (+10% per hour active for diurnal species). The effects of climate warming on desert lizard energy budgets will thus be species-specific but potentially predictable. 
    more » « less
    Free, publicly-accessible full text available January 17, 2026
  2. Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity. 
    more » « less